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In this Letter we report a simulation study in which we compare the solid-liquid interfacial free energy
of NaCl at coexistence, �LS, with the value that follows from the height of the homogeneous nucleation
barrier. The two estimates differ by more than 100%. Smaller discrepancies are found for �LS of hard-
sphere and of Lennard-Jones particles. We consider a variety of possible causes for this discrepancy and
conclude that it is due to a finite-size effect that cannot be corrected for by any simple thermodynamic
procedure. By taking into account the finite-size effects of �LS obtained in real nucleation experiments, we
obtain quantitative agreement between �LS estimated in the simulations and derived from the experiments.
Our finding suggests that most published solid-liquid surface free energies derived from nucleation
experiments will have to be revised.
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The study of homogeneous crystal nucleation is of in-
terest because it provides information about the pathway
by which crystalline order emerges from the disordered
parent phase. However, such experiments are also of con-
siderable practical importance, as they are used to estimate
the magnitude of the solid-liquid interfacial free energy.
Classical nucleation theory (CNT), see, e.g., [1], provides
the route by which experimental nucleation rates are re-
lated to surface free energies. CNT relates the number of
crystal nuclei that form per second per cubic meter (de-
noted by R) to �Gcrit, the height of the free-energy barrier
that has to be crossed to nucleate a crystal: R �
�e��Gcrit=kBT . Here � is a kinetic prefactor, T is the absolute
temperature, and kB is Boltzmann’s constant. CNT predicts
the following expression for the height of the nucleation

barrier: �Gcrit � c
�3

LS

�2
Sj��j

2 , where �LS is the liquid-solid

surface free energy per unit area, �� is the difference in
chemical potential between the solid and the supercooled
liquid, and �S is the number density of the crystalline
phase. c is a constant that depends on the shape of the
cluster, e.g., c � 16�=3 for a spherical crystal nucleus. As
the nucleation rate depends exponentially on �Gcrit, the
rate is a very sensitive function of the surface free-energy
density �LS. A crucial assumption underlying CNT is that
the bulk and surface properties of a small crystal nucleus
are the same as those of a macroscopic crystal. However, it
has been long realized that this assumption is questionable,
as a critical crystal nucleus often contains only a few
hundred molecules. Indeed, in his review on crystal nu-
cleation, Kelton writes, ‘‘While the precise meaning of
��LS� is uncertain, it constitutes a parameter that can be

determined for each element and profitably used to make
predictions of the nucleation behavior.’’ In other words, the
�LS determined from nucleation experiments can be used
only to predict the outcome of other nucleation experi-
ments, thus severely limiting the predictive value of CNT.
More microscopic theories such as density-functional
theory (DFT) [2,3], the Cahn-Hilliard approach (CH) [4],
or the phase-field formalism (PF) [5] can and have been
used to improve upon CNT. Yet, the question remains
whether the widely used CNT can be reformulated in
such a way that it correctly describes the properties of
small clusters while at the same time reproducing the
correct, macroscopic surface free energy.

Increasingly accurate simulation techniques allow us to
probe both the free energy of small nuclei and the surface
free energies of planar crystal-liquid interfaces. A case in
point is the system NaCl in contact with its melt.
Reference [6] reported the surface free energy of a NaCl
[100] interface in contact with the coexisting liquid phase:
�LS � 36� 6 mJ m�2. The effective surface free energy
that follows from the NaCl crystal-nucleation barrier at
800 K was reported in Ref. [7]: �LS � 80� 1 mJ m�2

(assuming that the nucleus has a cubic shape). In addition,
nucleation experiments at 905 K [8] provide an experi-
mental estimate of �LS � 68 mJ m�2.

Another example of a large difference between �LS

derived from the nucleation barrier and from coexistence
data comes from hard-sphere colloids: a comparison of
simulations at coexistence [9] and in the supersaturated
regime [10] indicate that the value of �LS estimated on the
basis of the nucleation barrier is some 30% larger than the
value for a planar interface at coexistence. A similar dis-
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crepancy [O�20%�] exists between the surface free energy
for the planar interface and the crystal nucleus of the
[truncated and (force-)shifted] Lennard-Jones potential
[11–13]. It is clearly of considerable interest to understand
the origin of the discrepancy between the nucleation data
and the results for �LS at coexistence, as this might facili-
tate the interpretation and analysis of experimental nuclea-
tion data.

In this Letter, we report a systematic study of the finite-
size effects in the surface free energy of NaCl crystals in
contact with their melt. We chose this system because it
shows the largest discrepancy of all examples listed above.
As in Refs. [6,7,14] we use the Tosi-Fumi rigid-ion-pair
interaction potential [15] to model the interionic interac-
tions in NaCl. We note at the outset that it is imprecise to
speak of the surface free-energy density of a small crys-
tallite, as the value of �LS depends on the choice of the
dividing surface (equimolar dividing surface, equienthalpy
dividing surface, surface of tension, etc.—see Ref. [16]).
For flat interfaces, the corresponding surface free energies
are all the same, but this is not the case for strongly curved
surfaces. The surface free energy that enters into CNT is
the one associated with the surface of tension [17]. One
property of the surface of tension is that it is, to lowest
order, independent of the choice of the dividing surface.
We use this property to determine �LS associated with the
surface of tension. To facilitate the comparison with the
data of Ref. [6] that refer to a flat interface at coexistence,
we deduce �LS from the size dependence of the free energy
of a small crystallite at coexistence. At coexistence, there is
no difference in chemical potential between the liquid and
the bulk solid; hence, the excess free energy of a small
crystallite is entirely due to its surface.

All simulations were carried out at the coexistence
temperature TM � �1060� 10� K. TM is reported in
[14,18]. The melting temperature of Tosi-Fumi NaCl is
close to the experimental value: Texp

M � 1074 K [19]. As a
first step, we determine the dependence of the free energy
of small NaCl crystallites on the number of ions in the
crystal. For this part of the calculation, we make use of
umbrella sampling [20] at constant N, P, and T. These
simulations yield the excess free energy of the largest
crystalline cluster in the system as a function of the number
of particles in that cluster. We use a geometrical criterion
(see Ref. [7]) to distinguish crystalline from liquidlike
particles. We can then deduce the surface free-energy
density using

 �LS�N� �
�G�N�
C

�2=3
s N�2=3; (1)

where N denotes the number of crystalline particles and C
is a geometrical constant that has a value of 6 for a cubic
nucleus and �36��1=3 for a sphere. Although there are
strong fluctuations in the shape of a small NaCl crystallite
in contact with its melt, its average shape is fairly cubic
(see Fig. 1). Of course, we need not assume a priori that the

cluster is cubic: we can use the average cluster shape from
Fig. 1 to perform a Wulff construction (see, e.g., [21]) that
yields the variation of the surface free energy with orien-
tation. Assuming that the surface free energy of the �100�
equals the macroscopic value, we can then compute the
average �LS of the cluster. Leaving apart the question
whether a Wulff construction is at all meaningful for
clusters containing O�102� particles, we note that this
procedure yields h�LSi � 40 mJ m�2, which is within
10% of the value expected for a perfect cube. In what
follows, we therefore assume that small NaCl crystals
have the same cubic morphology as macroscopic crystals.
From Fig. 2, we cannot yet deduce the surface free energy
because there is no a priori reason to assume that the
surface of this geometrical cluster has any thermodynamic
meaning. We know, however, that in the thermodynamic
limit, the ratio of Ng to N, the ‘‘thermodynamic’’ number
of atoms in the crystal, should approach 1. We therefore
make the ansatz N � �N1=3

g 	 a�3, where a is an adjustable
parameter that remains to be determined. To find the
number of atoms within the surface of tension, we choose
a value of a that minimizes the variation of �LS with the
size of the cluster. This analysis leads to a value of a � 0.
Figure 3 shows that, over the range of cluster sizes studied,
the resulting value of �LS is indeed almost independent of
N for all but the smallest clusters. More interestingly, we
find that the resulting value of �LS is very close to the value
�LS � 80 mJ m�2 that follows from the analysis of the
nucleation barrier at 800 K [7] (see Fig. 3). Moreover, a
similar analysis at 800 K leads to the same estimate of �LS.
The internal consistency between the values of �LS derived
from the nucleation barrier and from the surface of tension
would be encouraging were it not for the fact that it does
nothing to resolve the discrepancy with the value of

FIG. 1 (color online). Average shape of a NaCl crystallite
consisting of 140 solidlike particles. As the shape of such a
small cluster fluctuates, we obtain the average shape by super-
imposing a large number of instantaneous configurations of the
same mass, fixing their center of mass, and the orientation of the
crystal axes. We average over all 48 symmetry-related orienta-
tions. The surface is defined as the set of points where the
average density equals the average of the solid and liquid
densities. Only the crystalline particles inside this surface are
shown.
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36 mJ m�2 found for a flat interface. Choosing another
conventional dividing surface (e.g., the equimolar or the
equienthalpy surface) [22] only makes matters worse: in
both cases we find a negative value of a that results in an
even larger value of �LS that is, moreover, strongly cluster-
size dependent. Hence, we conclude that the discrepancy
between the properties of a small crystal and a flat interface
cannot be corrected for by choosing a better definition of
the location of the solid-liquid interface.

The above discussion suggests that the conventional
version of CNT cannot account for the observed discrep-
ancy between the surface free energy of a flat interface and
that of a small crystallite. However, even within a thermo-
dynamic approach, one can introduce corrections to clas-
sical nucleation theory that would change the apparent
value of the surface free energy. One such correction takes
into account that the crystal nucleus is compressible and
that the surface free energy depends on the density of the
crystal. To estimate the magnitude of this effect, we extend

the analysis of Mullins [17] to obtain

 r �
f�LS��s�=�LS��s�0��g3

�1� ���s=�2B� �
1
2B�

2=��s����
2
;

where r is the ratio between the barrier height in the case of
compressible nuclei (with density �s), compared to that for
incompressible clusters [with density �s�0�]. B denotes the
bulk modulus of the crystal and � the elastic strain, com-
pared to that of a solid at the same chemical potential as
that of the parent liquid. From our simulations, we find that
the density at the center of the crystal nucleus is some 6%
lower than the reference value. Even with this rather ex-
treme estimate of the strain in the nucleus, we find a
compressibility correction to the apparent value of �LS

that is no more than 10%. Hence, we conclude that com-
pressibility effects cannot account for the observed
discrepancy.

Thus far, we have not considered the effect of edges and
vertices on the surface free energy of a small cluster. This
effect is certainly non-negligible. If, for instance, we con-
sider a cubic NaCl crystal in vacuum at T � 0 K, both the
line energy of the edges and the vertex energy of the
corners can be determined directly. The energy of an
NaCl cube can be written as e � eB‘3 	 6eS‘2 	 12eE‘	
8eC, where e is the total internal energy per particle, eB is
the energy per particle in a bulk crystal, eS is the energy of
a particle belonging to the surface, eE is the energy of a
particle belonging to an edge, eC is the energy of a particle
belonging to a corner of the cube, and ‘ is the number of
atoms per edge. Computing this energy for a crystal of 64,
216, and 512 atoms [23], we find that eE=eS � 0:22 and
eC=es � 1:2. The effect of these edge and vertex contribu-
tions is to increase the apparent surface energy by 13% for
a crystal of 216 particles. Of course, these numbers do not
apply to a hot NaCl crystal in contact with its melt, and it is
not even obvious how to define the various terms in that
case, as not only the magnitude but even the sign of eE and
eC depend on the precise choice of the dividing surface.
This means that, within the macroscopic framework im-
posed by CNT, we cannot reliably estimate the edge and
corner contributions to the surface free energy.

We are therefore forced to conclude that the large ap-
parent value of �LS of small crystallites is due to a finite-
size effect that is not easily accounted for within a thermo-
dynamic theory. Rather, the free energy of small clusters
must be computed using a molecular approach, either
theoretically (as in DFT [2,3], CH [4], or PF [5]) or
numerically, as illustrated in the present work. In the
present Letter, and in Ref. [7], we computed the free
energy of relatively small clusters (up to N � 200).
However, under the experimental conditions for crystal
nucleation of NaCl (T � 905 K), the critical nucleus is
expected to contain O�6
 102� particles. Calculations for
larger clusters would be feasible, but expensive. We there-
fore make the Tolman ‘‘ansatz’’ that the leading correction
to surface free energy is proportional to 1=Rc, where Rc is
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FIG. 3. Interfacial free energy as a function of N computed at
the surface of tension, assuming a cubic cluster with a � 0.
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FIG. 2. Free-energy barriers (��G) as a function of Ng at
coexistence TM. The error bars in ��G are comparable to the
size of the symbols.
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the radius of the critical nucleus. As 1=Rc � ��, we
assume that the variation in �LS is of the form �LS���� �
�coex

LS 	 b��. We can determine b from the simulation
data of Refs. [6,7]. Inserting the value �� � 0:3 kT at
T � 905 K, we predict that under the condition of the
nucleation experiments of Ref. [8], the effective value
of �LS should be 67 mJ m�2, in an almost embarrassing
agreement with the experimental data (�LS � 68 mJ m�2).
Although this good agreement is almost certainly fortui-
tous, it does support our conjecture that the surface free
energies measured in nucleation experiments are subject to
very large finite-size corrections (in this case: more than
80%). If we take this strong �� dependence of �LS seri-
ously, it would mean that for strongly faceted crystals
(although not for NaCl), the nucleation barrier could start
to rise again at large supersaturations. This should be
experimentally observable, as it would lead to an increase
in the final crystallite size in fully crystallized samples
[24]. Interestingly—but we do not know if it is really
relevant—the final crystallite size in hard-sphere crystal-
lization suddenly grows as the concentration is increased
beyond a volume fraction of 58%. If the barrier is a
monotonically decreasing function of the volume fraction,
this should not happen.

In summary, our study of the free energy of NaCl
crystallites indicates that the surface free energy is subject
to large finite-size corrections that cannot be accounted for
within a thermodynamic theory. Based on the small num-
ber of examples where the relevant simulation data are
available (NaCl, Lennard-Jones, hard spheres), we specu-
late that the finite-size effects are most pronounced for
strongly faceted crystals, such as NaCl. The present results
support the suggestion by Kelton that the large number of
published surface free energies that are based on nuclea-
tion data are of little use to predict macroscopic surface
free energies. We stress that, in addition to nucleation
studies, there are other, more reliable, experimental routes
to determine solid-liquid surface free energies. An example
is the grain-boundary groove method [25]. However, such
experiments are challenging, especially for materials that
have anisotropic surface free energies. Our work highlights
the fact that, if nucleation studies are used to estimate
solid-liquid surface free energies, the analysis cannot be
based on CNT but must make use of one of the more
accurate, microscopic theories for crystal nucleation that
properly account for the fact that crystal nuclei are far from
macroscopic.
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